Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.363
Filtrar
1.
J Math Biol ; 88(6): 71, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668894

RESUMO

In epidemics, waning immunity is common after infection or vaccination of individuals. Immunity levels are highly heterogeneous and dynamic. This work presents an immuno-epidemiological model that captures the fundamental dynamic features of immunity acquisition and wane after infection or vaccination and analyzes mathematically its dynamical properties. The model consists of a system of first order partial differential equations, involving nonlinear integral terms and different transfer velocities. Structurally, the equation may be interpreted as a Fokker-Planck equation for a piecewise deterministic process. However, unlike the usual models, our equation involves nonlocal effects, representing the infectivity of the whole environment. This, together with the presence of different transfer velocities, makes the proved existence of a solution novel and nontrivial. In addition, the asymptotic behavior of the model is analyzed based on the obtained qualitative properties of the solution. An optimal control problem with objective function including the total number of deaths and costs of vaccination is explored. Numerical results describe the dynamic relationship between contact rates and optimal solutions. The approach can contribute to the understanding of the dynamics of immune responses at population level and may guide public health policies.


Assuntos
Doenças Transmissíveis , Conceitos Matemáticos , Modelos Imunológicos , Vacinação , Humanos , Vacinação/estatística & dados numéricos , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/transmissão , Simulação por Computador , Epidemias/estatística & dados numéricos , Modelos Epidemiológicos
4.
Inmunología (1987) ; 42(2): 38-43, Jun.-Dic. 2023. ilus
Artigo em Espanhol | IBECS | ID: ibc-231264

RESUMO

En este trabajo, recientemente publicado en la prestigiosa revista Advanced Science (Adv Sci; Weinheim, Baden-Württemberg, Germany), se ha diseñado y estudiado a nivel preclínico un anticuerpo biespecífico neutralizante (nAbs) frente al virus SARS-CoV-2 y dirigido específicamente a un receptor de células dendríticas convencionales de tipo 1 (cDC1s) para estimular específicamente la respuesta de linfocitos T citotóxicos. El trabajo surge de la colaboración de un consorcio muy amplio de grupos de investigación expertos en distintas áreas de la inmunología, biología celular, virología, biología estructural, química de proteínas y partículas, que han logrado generar un anticuerpo trimérico biespecífico, TNTDNGR-1. TNT se corresponde con las siglas en inglés para anticuerpo neutralizante en tándem trimérico, mientras que DNGR-1 es la molécula inmuno-reguladora “dendritic cell natural killer group receptor-1”, también conocida como CLEC9A. TNTDNGR-1 presenta una gran avidez frente a la región RBD (“receptor binding domain”) del virus SARS-CoV-2 y también frente al receptor DNGR-1, una lectina tipo C expresada por cDC1s. Se trata, además de una colaboración público-privada, con la participación de una compañía de biotecnología española, otorgando valor añadido al trabajo de investigación, por su potencial traslación a la clínica a corto o medio plazo. Mediante el uso de técnicas de crio-microscopía electrónica se ha comprobado que la estructura TNT , backbone de TNTDNGR-1, permite la unión simultánea a sus seis epítopos en la proteína S (del inglés spike) del SARS-CoV-2, dos por cada RBD, dotándola de una interacción neutralizante de alta afinidad frente al virus. ... (AU)


Assuntos
Humanos , Anticorpos Biespecíficos/imunologia , /imunologia , Linfócitos T Citotóxicos/imunologia , Células Dendríticas/imunologia , Doenças Transmissíveis/imunologia
5.
Int J Mol Sci ; 23(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36430676

RESUMO

Research of the last decade has remarkably increased our understanding of innate lymphoid cells (ILCs). ILCs, in analogy to T helper (Th) cells and their cytokine and transcription factor profile, are categorized into three distinct populations: ILC1s express the transcription factor T-bet and secrete IFNγ, ILC2s depend on the expression of GATA-3 and release IL-5 and IL-13, and ILC3s express RORγt and secrete IL-17 and IL-22. Noteworthy, ILCs maintain a level of plasticity, depending on exposed cytokines and environmental stimuli. Furthermore, ILCs are tissue resident cells primarily localized at common entry points for pathogens such as the gut-associated lymphoid tissue (GALT). They have the unique capacity to initiate rapid responses against pathogens, provoked by changes of the cytokine profile of the respective tissue. Moreover, they regulate tissue inflammation and homeostasis. In case of intracellular pathogens entering the mucosal tissue, ILC1s respond by secreting cytokines (e.g., IFNγ) to limit the pathogen spread. Upon infection with helminths, intestinal epithelial cells produce alarmins (e.g., IL-25) and activate ILC2s to secrete IL-13, which induces differentiation of intestinal stem cells into tuft and goblet cells, important for parasite expulsion. Additionally, during bacterial infection ILC3-derived IL-22 is required for bacterial clearance by regulating antimicrobial gene expression in epithelial cells. Thus, ILCs can limit infectious diseases via secretion of inflammatory mediators and interaction with other cell types. In this review, we will address the role of ILCs during enteric infectious diseases.


Assuntos
Gastroenteropatias , Imunidade Inata , Linfócitos , Humanos , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Citocinas/metabolismo , Imunidade Inata/fisiologia , Interleucina-13/metabolismo , Linfócitos/metabolismo , Gastroenteropatias/imunologia , Gastroenteropatias/microbiologia
6.
J Virol ; 96(7): e0009822, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285684

RESUMO

Respiratory viruses cause mild to severe diseases in humans every year, constituting a major public health problem. Characterizing the pathogenesis in physiologically relevant models is crucial for developing efficient vaccines and therapeutics. Here, we show that lung organoids derived from human primary or lung tumor tissue maintain the cellular composition and characteristics of the original tissue. Moreover, we show that these organoids sustain viral replication with particular infection foci formation, and they activate the expression of interferon-associated and proinflammatory genes responsible for mediating a robust innate immune response. All together, we show that three-dimensional (3D) lung organoids constitute a relevant platform to model diseases and enable the development of drug screenings. IMPORTANCE Three-dimensional (3D) human lung organoids reflect the native cell composition of the lung as well as its physiological properties. Human 3D lung organoids offer ideal conditions, such as timely availability in large quantities and high physiological relevance for reassessment and prediction of disease outbreaks of respiratory pathogens and pathogens that use the lung as a primary entry portal. Human lung organoids can be used in basic research and diagnostic settings as early warning cell culture systems and also serve as a relevant platform for modeling infectious diseases and drug development. They can be used to characterize pathogens and analyze the influence of infection on, for example, immunological parameters, such as the expression of interferon-associated and proinflammatory genes in the context of cancer. In our study, we found that cancer-derived lung organoids were more sensitive to influenza A virus infection than those derived from healthy tissue and demonstrated a decreased innate immune response.


Assuntos
Pulmão , Técnicas de Cultura de Órgãos , Organoides , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/imunologia , Humanos , Imunidade Inata , Interferons , Pulmão/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides/imunologia , Organoides/virologia
7.
Proc Natl Acad Sci U S A ; 119(14): e2119093119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35312341

RESUMO

SignificanceUsing SARS-CoV-2 as a relevant case study for infectious disease, we investigate the structure-function relationships that dictate antiviral spherical nucleic acid (SNA) vaccine efficacy. We show that the SNA architecture can be rapidly employed to target COVID-19 through incorporation of the receptor-binding domain, and that the resulting vaccine potently activates human cells in vitro and mice in vivo. Furthermore, when challenged with a lethal viral infection, only mice treated with the SNA vaccine survived. Taken together, this work underscores the importance of rational vaccine design for infectious disease to yield vaccines that elicit more potent immune responses to effectively fight disease.


Assuntos
Controle de Doenças Transmissíveis , Ácidos Nucleicos/imunologia , Vacinas de DNA/imunologia , Animais , Biotecnologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/etiologia , Doenças Transmissíveis/imunologia , Humanos , Ácidos Nucleicos/química , SARS-CoV-2/imunologia , Desenvolvimento de Vacinas , Vacinas de DNA/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
8.
Carbohydr Res ; 513: 108527, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35240551

RESUMO

iNKT cells are a special type of T cell that acts as a link between the innate and adaptive immune systems, with the capacity to stimulate a wide range of cell types. The glycolipid α-galactosylceramide (αGC) is a robust agonist of iNKT cells and induces the secretion of Th1- and Th2-type cytokines. αGC and its analogs are widely used as adjuvants to enhance immune responses against viral, parasitic, and bacterial pathogens. This review first discusses the challenges of using free αGC as a vaccine adjuvant to treat infectious diseases. We next present strategies to realize the potential of the adjuvant effect of iNKT cell glycolipids, including (1) the use of Th1- or Th2-biasing αGC analogs, (2) covalent conjugation of glycolipid with antigen, (3) particulate vehicle-assisted delivery of glycolipid, (4) glycolipid-loaded cellular systems, (5) glycolipid combination with other immunostimulants, and (6) usage as mucosal adjuvants. Finally, we discuss future approaches for the development of iNKT cell agonists used as vaccine adjuvants against infectious diseases.


Assuntos
Adjuvantes de Vacinas/farmacologia , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Células T Matadoras Naturais/imunologia , Animais , Humanos
9.
Oxid Med Cell Longev ; 2022: 2501279, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35132346

RESUMO

Eukaryotic cells can initiate several distinct self-destruction mechanisms to display essential roles for the homeostasis maintenance, development, and survival of an organism. Pyroptosis, a key response mode in innate immunity, also referred to as caspase-1-dependent proinflammatory programmed necrotic cell death activated by human caspase-1/4/5, or mouse caspase-1/11, plays indispensable roles in response to cytoplasmic insults and immune defense against infectious diseases. These inflammatory caspases are employed by the host to eliminate pathogen infections such as bacteria, viruses, protozoans, and fungi. Gasdermin D requires to be cleaved and activated by these inflammatory caspases to trigger the pyroptosis process. Physiological rupture of cells results in the release of proinflammatory cytokines, the alarmins IL-1ß and IL-18, symbolizing the inflammatory potential of pyroptosis. Moreover, long noncoding RNAs play direct or indirect roles in the upstream of the pyroptosis trigger pathway. Here, we review in detail recently acquired insights into the central roles of inflammatory caspases, inflammasomes, and pyroptosis, as well as the crosstalk between pyroptosis and long noncoding RNAs in mediating infection immunity and pathogen clearance.


Assuntos
Caspases/metabolismo , Doenças Transmissíveis/imunologia , Imunidade Inata , Inflamassomos/metabolismo , Piroptose/imunologia , Transdução de Sinais/imunologia , Alarminas/metabolismo , Animais , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Camundongos , Proteínas de Ligação a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , RNA Longo não Codificante/metabolismo
10.
Mol Biol Rep ; 49(2): 1529-1535, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34981335

RESUMO

Infection processes induce various soluble factors that are carcinogens in humans; therefore, research into the soluble factors of chronic disease released from cells that have been infected with parasites is warranted. Parasitic infections in host cells release high levels of IFNγ. Studies have hypothesised that parasitosis-associated carcinogenesis might be analogous to colorectal cancers developed from inflammatory bowel diseases, whereby various cytokines and chemokines are secreted during chronic inflammation. IL-18 and IL-21 are other factors that might be involved in the development of colorectal cancer in schistosomiasis patients and patients with other infections. IL-21 has profound effects on tumour growth and immunosurveillance of colitis-associated tumourigenesis, thereby emphasising its involvement in the pathogenesis of colorectal cancer. The prominent role of IL-21 in antitumour effects greatly depends on the enhanced cytolytic activity of NK cells and the pathogenic role of IL-21, which is often associated with enhanced risks of cancer and chronic inflammatory processes. As IL-15 is also related to chronic disease, it is believed to also play a role in the antitumour effect of colorectal carcinogenesis. IL-15 generates and maintains long-term CD8+ T cell immunity against T. gondii to control the infection of intracellular pathogens. The lack of IL-15 in mice contributes to the downregulation of the IFNγ-producing CD4+ T cell response against acute T. gondii infection. IL-15 induces hyperplasia and supports the progressive growth of colon cancer via multiple functions. The limited role of IL-15 in the development of NK and CD8+ T cells suggests that there may be other cytokines compensating for the loss of the IL-15 gene.


Assuntos
Neoplasias Colorretais/imunologia , Doenças Transmissíveis/imunologia , Citocinas/metabolismo , Animais , Linfócitos T CD8-Positivos/imunologia , Carcinogênese/imunologia , Carcinogênese/patologia , Colite , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/fisiopatologia , Citocinas/imunologia , Humanos , Inflamação/patologia , Interleucina-15 , Interleucinas , Células Matadoras Naturais/patologia , Camundongos , Toxoplasma , Toxoplasmose/complicações , Toxoplasmose/imunologia
11.
PLoS One ; 17(1): e0248666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077448

RESUMO

INTRODUCTION: This scoping review explores the use of peptide microarrays in the fight against infectious diseases. The research domains explored included the use of peptide microarrays in the mapping of linear B-cell and T cell epitopes, antimicrobial peptide discovery, immunosignature characterisation and disease immunodiagnostics. This review also provides a short overview of peptide microarray synthesis. METHODS: Electronic databases were systematically searched to identify relevant studies. The review was conducted using the Joanna Briggs Institute methodology for scoping reviews and data charting was performed using a predefined form. The results were reported by narrative synthesis in line with the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews guidelines. RESULTS: Ninety-five articles from 103 studies were included in the final data charting process. The majority (92. 0%) of the articles were published during 2010-2020 and were mostly from Europe (44.2%) and North America (34.7%). The findings were from the investigation of viral (45.6%), bacterial (32. 0%), parasitic (23.3%) and fungal (2. 0%) infections. Out of the serological studies, IgG was the most reported antibody type followed by IgM. The largest portion of the studies (77.7%) were related to mapping B-cell linear epitopes, 5.8% were on diagnostics, 5.8% reported on immunosignature characterisation and 8.7% reported on viral and bacterial cell binding assays. Two studies reported on T-cell epitope profiling. CONCLUSION: The most important application of peptide microarrays was found to be B-cell epitope mapping or antibody profiling to identify diagnostic and vaccine targets. Immunosignatures identified by random peptide microarrays were found to be applied in the diagnosis of infections and interrogation of vaccine responses. The analysis of the interactions of random peptide microarrays with bacterial and viral cells using binding assays enabled the identification of antimicrobial peptides. Peptide microarray arrays were also used for T-cell linear epitope mapping which may provide more information for the design of peptide-based vaccines and for the development of diagnostic reagents.


Assuntos
Doenças Transmissíveis/imunologia , Mapeamento de Epitopos/métodos , Peptídeos/imunologia , Análise Serial de Proteínas/métodos , Doenças Transmissíveis/diagnóstico , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Europa (Continente) , Humanos , Imunoglobulina G/metabolismo , Imunoglobulina M/metabolismo , Análise em Microsséries , América do Norte
12.
Emerg Microbes Infect ; 11(1): 384-391, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35001848

RESUMO

This paper presents the key outcomes of the above WHO informal consultation with global stakeholders including regulatory authorities, vaccine developers and manufacturers, academia and other international health organizations and institutions involved in the development, evaluation and use of messenger RNA (mRNA) vaccines. The aim of the consultation was to further clarify the main principles to be presented in an upcoming WHO guidance document on the regulatory considerations in evaluating the quality, safety and efficacy of mRNA prophylactic vaccines for infectious diseases. This WHO guidance document is intended to facilitate global mRNA vaccine development and regulatory convergence in the assessment of such vaccines. The urgent need to develop such a document as a new WHO written standard is outlined in this report along with the key scientific and regulatory challenges. A number of key conclusions are provided at the end of this report along with an update on the steps taken following this meeting.


Assuntos
Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/imunologia , Vacinas Sintéticas/efeitos adversos , Vacinas Sintéticas/uso terapêutico , Vacinas de mRNA/efeitos adversos , Vacinas de mRNA/uso terapêutico , COVID-19/prevenção & controle , Humanos , Potência de Vacina , Organização Mundial da Saúde
13.
J Cell Physiol ; 237(4): 2019-2033, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34918359

RESUMO

Follicular dendritic cells (FDCs) are unique accessory immune cells that contribute to the regulation of humoral immunity. They are multitasker cells essential for the organization and maintenance of the lymphoid architecture, induction of germinal center reaction, production of B memory cells, and protection from autoimmune disorders. They perform their activities through both antigen-driven and chemical signaling to B cells. FDCs play a crucial role in the physiological regulation of the immune response. Dis-regulation of this immune response results when FDCs retain antigens for years. This provides a constant antigenic stimulation for B cells resulting in the development of immune disorders. Antigen trapped on FDCs is resistant to therapeutic intervention causing chronicity and recurrences. Beyond their physiological immunoregulatory functions, FDCs are involved in the pathogenesis of several immune-related disorders including HIV/AIDS, prion diseases, chronic inflammatory, and autoimmune disorders. FDCs have also been recently implicated in rare neoplasms of lymphoid and hematopoietic tissues. Understanding FDC biology is essential for better control of humoral immunity and opens the gate for therapeutic management of FDC-mediated immune disorders. Thus, the biology of FDCs has become a hot research area in the last couple of decades. In this review, we aim to provide a comprehensive overview of FDCs and their role in physiological and pathological conditions.


Assuntos
Doenças Autoimunes , Células Dendríticas Foliculares , Antígenos , Doenças Autoimunes/imunologia , Linfócitos B , Doenças Transmissíveis/imunologia , Células Dendríticas Foliculares/citologia , Células Dendríticas Foliculares/patologia , Centro Germinativo , Humanos
14.
Dev Comp Immunol ; 128: 104334, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34919982

RESUMO

Vaccination is the most effective medical strategy for disease prevention but there is a need to improve livestock vaccine efficacy. Understanding the structure of the immune system of swine, which are considered a γδ T cell "high" species, and thus, particularly how to engage their γδ T cells for immune responses, may allow for development of vaccine optimization strategies. The propensity of γδ T cells to home to specific tissues, secrete pro-inflammatory and regulatory cytokines, exhibit memory or recall responses and even function as antigen-presenting cells for αß T cells supports the concept that they have enormous potential for priming by next generation vaccine constructs to contribute to protective immunity. γδ T cells exhibit several innate-like antigen recognition properties including the ability to recognize antigen in the absence of presentation via major histocompatibility complex (MHC) molecules enabling γδ T cells to recognize an array of peptides but also non-peptide antigens in a T cell receptor-dependent manner. γδ T cell subpopulations in ruminants and swine can be distinguished based on differential expression of the hybrid co-receptor and pattern recognition receptors (PRR) known as workshop cluster 1 (WC1). Expression of various PRR and other innate-like immune receptors diversifies the antigen recognition potential of γδ T cells. Finally, γδ T cells in livestock are potent producers of critical master regulator cytokines such as interferon (IFN)-γ and interleukin (IL)-17, whose production orchestrates downstream cytokine and chemokine production by other cells, thereby shaping the immune response as a whole. Our knowledge of the biology, receptor expression and response to infectious diseases by swine γδ T cells is reviewed here.


Assuntos
Doenças Transmissíveis , Citocinas , Linfócitos Intraepiteliais , Receptores de Antígenos de Linfócitos T gama-delta , Doenças dos Suínos , Animais , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/veterinária , Citocinas/imunologia , Linfócitos Intraepiteliais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Reconhecimento de Padrão , Ruminantes , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia
15.
Front Immunol ; 12: 789610, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970269

RESUMO

The oral microbiome, one of the most complex and intensive microbial ecosystems in the human body, comprises bacteria, archaea, fungi, protozoa, and viruses. Dysbiosis of the oral microbiome is the initiating factor that leads to oral infectious diseases. Infection is a sophisticated biological process involving interplay between the pathogen and the host, which often leads to activation of programmed cell death. Studies suggest that pyroptosis, apoptosis, and necroptosis are involved in multiple oral infectious diseases. Further understanding of crosstalk between cell death pathways has led to pyroptosis, apoptosis, and necroptosis being integrated into a single term: PANoptosis. PANoptosis is a multifaceted agent of the immune response that has important pathophysiological relevance to infectious diseases, autoimmunity, and cancer. As such, it plays an important role in innate immune cells that detect and eliminate intracellular pathogens. In addition to the classical model of influenza virus-infected and Yersinia-infected macrophages, other studies have expanded the scope of PANoptosis to include other microorganisms, as well as potential roles in cell types other than macrophages. In this review, we will summarize the pathophysiological mechanisms underlying inflammation and tissue destruction caused by oral pathogens. We present an overview of different pathogens that may induce activation of PANoptosis, along with the functional consequences of PANoptosis in the context of oral infectious diseases. To advance our understanding of immunology, we also explore the strategies used by microbes that enable immune evasion and replication within host cells. Improved understanding of the interplay between the host and pathogen through PANoptosis will direct development of therapeutic strategies that target oral infectious diseases.


Assuntos
Apoptose , Doenças Transmissíveis/patologia , Doenças da Boca/patologia , Boca/patologia , Necroptose , Animais , Peptídeos Antimicrobianos/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/metabolismo , Disbiose , Interações Hospedeiro-Patógeno , Humanos , Mediadores da Inflamação/metabolismo , Microbiota , Boca/imunologia , Boca/metabolismo , Doenças da Boca/imunologia , Doenças da Boca/metabolismo , Piroptose , Transdução de Sinais
17.
Acc Chem Res ; 54(23): 4283-4293, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34793124

RESUMO

After decades of extensive fundamental studies and clinical trials, lipid nanoparticles (LNPs) have demonstrated effective mRNA delivery such as the Moderna and Pfizer-BioNTech vaccines fighting against COVID-19. Moreover, researchers and clinicians have been investigating mRNA therapeutics for a variety of therapeutic indications including protein replacement therapy, genome editing, and cancer immunotherapy. To realize these therapeutics in the clinic, there are many formidable challenges. First, novel delivery systems such as LNPs with high delivery efficiency and low toxicity need to be developed for different cell types. Second, mRNA molecules need to be engineered for improved pharmaceutical properties. Lastly, the LNP-mRNA nanoparticle formulations need to match their therapeutic applications.In this Account, we summarize our recent advances in the design and development of various classes of lipids and lipid derivatives, which can be formulated with multiple types of mRNA molecules to treat diverse diseases. For example, we conceived a series of ionizable lipid-like molecules based on the structures of a benzene core, an amide linker, and hydrophobic tails. We identified N1,N3,N5-tris(3-(didodecylamino)propyl)benzene-1,3,5-tricarboxamide (TT3) as a lead compound for mRNA delivery both in vitro and in vivo. Moreover, we tuned the biodegradability of these lipid-like molecules by introducing branched ester or linear ester chains. Meanwhile, inspired by biomimetic compounds, we synthesized vitamin-derived lipids, chemotherapeutic conjugated lipids, phospholipids, and glycolipids. These scaffolds greatly broaden the chemical space of ionizable lipids for mRNA delivery. In another section, we highlight our efforts on the research direction of mRNA engineering. We previously optimized mRNA chemistry using chemically-modified nucleotides to increase the protein expression, such as pseudouridine (ψ), 5-methoxyuridine (5moU), and N1-methylpseudouridine (me1ψ). Also, we engineered the sequences of mRNA 5' untranslated regions (5'-UTRs) and 3' untranslated regions (3'-UTRs), which dramatically enhanced protein expression. With the progress of LNP development and mRNA engineering, we consolidate these technologies and apply them to treat diseases such as genetic disorders, infectious diseases, and cancers. For instance, TT3 and its analog-derived lipid-like nanoparticles can effectively deliver factor IX or VIII mRNA and recover the clotting activity in hemophilia mouse models. Engineered mRNAs encoding SARS-CoV-2 antigens serve well as vaccine candidates against COVID-19. Vitamin-derived lipid nanoparticles loaded with antimicrobial peptide-cathepsin B mRNA enable adoptive macrophage transfer to treat multidrug resistant bacterial sepsis. Biomimetic lipids such as phospholipids formulated with mRNAs encoding costimulatory receptors lead to enhanced cancer immunotherapy.Overall, lipid-mRNA nanoparticle formulations have considerably benefited public health in the COVID-19 pandemic. To expand their applications in clinical use, research work from many disciplines such as chemistry, engineering, materials, pharmaceutical sciences, and medicine need to be integrated. With these collaborative efforts, we believe that more and more lipid-mRNA nanoparticle formulations will enter the clinic in the near future and benefit human health.


Assuntos
Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , RNA Mensageiro/química , Animais , Benzamidas/química , Materiais Biomiméticos/química , Doenças Transmissíveis/imunologia , Doenças Transmissíveis/terapia , Modelos Animais de Doenças , Doenças Genéticas Inatas/imunologia , Doenças Genéticas Inatas/terapia , Humanos , Camundongos , Neoplasias/imunologia , Neoplasias/terapia , Fosfolipídeos/química , RNA Mensageiro/metabolismo , RNA Mensageiro/uso terapêutico , Regiões não Traduzidas , Vitaminas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...